Math Notes – Theory of Relations – Part 4
In the following theorems, all relations are subsets of the cross-product A´B, so an implicit assumption in all theorems is
rÍ A´B
In some theorems there will be a reference to the universal set of discourse. The universal set of discourse is denoted by U.
A reference to a theorem from part 1, part 2, or part 3 is noted. If there is no reference to an earlier part, then the refered theorem is on this page.
Definition 1: A relation r is a function º
("b,c,c’ | b r c Ù b r c’ : c = c’)
Theorem 1: s Î ran.r.{x} º x r s
(prove by showing LHS º RHS)
s Î ran.r.{x}
º(definition of ran.r.{x})
s Î {b|($a|:a r b Ù a Î {x}):b}
º(definition of Î)
($b|($a|:a r b Ù a Î {x}):b=s)
($b|($a|:a r b Ù a = x):b=s)
º(trading, one point rule)
($b|x r b: b=s)
º(trading, one point rule)
x r s
End of Proof
Theorem 2: r is a function Ù ran.r.{x} ¹ÆÞ
ran.r.{x} is a singleton set
(given r is a function Ù ran.r.{x} ¹Æ,
let s Î ran.r.{x}, prove that ran.r.{x} = {s})
(part 1. show {s} Í ran.r.{x})
(given)
s Î ran.r.{x}
s Í ran.r.{x}
End of Part 1 Proof
(part 2. prove ran.r.{x} Í {s})
(proof uses the principal (true Þ P) º P)
(reflexive property of Þ)
("t|:t Î ran.r.{x} Þ t Î ran.r.{x})
º(trading)
("t|t Î ran.r.{x}: t Î ran.r.{x})
º(theorem 1)
("t|t Î ran.r.{x}: x r t)
º(given, theorem 1, identity of Ù)
("t|t Î ran.r.{x}: x r t Ù x r s)
Þ(given, axiom 1, monotonicity of ")
("t|t Î ran.r.{x}: t = s)
("t|t Î ran.r.{x}: t Î {s})
º(definition of Í)
ran.r.{x} Í {s}
End of Part 2 Proof
End of Proof
Theorem 3: r is a function Þ dom.r.P Ç dom.r.Q Í dom.r.(P Ç Q)
(given r is a function prove LHS Í RHS by applying the theorem true Þ P º P)
(reflexive property of Í)
dom.r.P Ç dom.r.Q Í dom.r.P Ç dom.r.Q
º(definition of Í)
("x | x Î dom.r.P Ç dom.r.Q : x Î dom.r.P Ç dom.r.Q)
º(definition of Ç)
("x | x Î dom.r.P Ç dom.r.Q : x Î dom.r.P Ù x Î dom.r.Q)
º(definition of dom.r.P, quantifying variable c is distinct from b)
("x | x Î dom.r.P Ç dom.r.Q :
º(definition of Î)
("x | x Î dom.r.P Ç dom.r.Q :
º(trading in $)
("x | x Î dom.r.P Ç dom.r.Q :
º(one point rule, x is distinct)
("x | x Î dom.r.P Ç dom.r.Q :
º(distribute Ù over $, c is distinct from b)
("x | x Î dom.r.P Ç dom.r.Q :
º(distribute Ù over $, b is distinct from c)
("x | x Î dom.r.P Ç dom.r.Q :
($b|:($c|:x r b Ù b Î P Ù x r c Ù c Î Q)))
Þ(r is a function Þ b = c)
("x | x Î dom.r.P Ç dom.r.Q :
($b|:($c|: x r b Ù b Î P Ù x r b Ù b Î Q)))
º(symmetric, reflexive properties of Ù
("x | x Î dom.r.P Ç dom.r.Q :
($b|:($c|: x r b Ù b Î P Ù b Î Q)))
º(definition of Ç)
("x | x Î dom.r.P Ç dom.r.Q :
($b|: ($c|: x r b Ù b Î P Ç Q)))
º(Identity of Ú)
("x | x Î dom.r.P Ç dom.r.Q :
($b|:($c|: (x r b Ù b Î P Ç Q) Ú false)))
º(distribute Ú over $)
("x | x Î dom.r.P Ç dom.r.Q :
($b|:(x r b Ù b Î P Ç Q) Ú ($c|:false)))
º(($x|P:false) º false)
("x | x Î dom.r.P Ç dom.r.Q :
($b|:(x r b Ù b Î P Ç Q) Ú false))
º(Identity of Ú)
("x | x Î dom.r.P Ç dom.r.Q :($b|: x r b Ù b Î P Ç Q))
º(one point rule, trading)
("x | x Î dom.r.P Ç dom.r.Q :($a|($b|:a r b Ù b Î P Ç Q):x=a))
º(definition of Î)
("x | x Î dom.r.P Ç dom.r.Q :x Î {a|($b|:a r b Ù b Î P Ç Q):a})
º(definition of dom.r.P)
("x | x Î dom.r.P Ç dom.r.Q :x Î dom.r.(P Ç Q))
º(definition of Í)
dom.r.P Ç dom.r.Q Í dom.r.(P Ç Q))
End of Proof
Theorem 4: r is a function Þ dom.r.P Ç dom.r.Q = dom.r.(P Ç Q)
dom.r.(P Ç Q) Í (dom.r.P Ç dom.r.Q)
(Theorem 3)
dom.r.P Ç dom.r.Q Í dom.r.(P Ç Q)
º(identity of Ù, P Í Q Ù Q Í P º P = Q)
dom.r.(P Ç Q) = (dom.r.P Ç dom.r.Q)
End of Proof
Theorem 5: r is a function Þ ran.r.(dom.r.R) Í R
(proof uses the principal (true Þ P) º P)
(given r is a function, prove LHS Í RHS)
(reflexive property of Í)
ran.r.(dom.r.R) Í ran.r.(dom.r.R)
º(definition of Í)
("y|y Î ran.r.(dom.r.R): y Î ran.r.(dom.r.R))
º(definition of ran.r.(dom.r.R))
("y|y Î ran.r.(dom.r.R):
y Î {b|($a|a r b Ù aÎ dom.r.R):b})
º(definition of Î)
("y|y Î ran.r.(dom.r.R):
($b|($a|a r b Ù aÎ dom.r.R):b=y))
º(trading, one point rule)
("y|y Î ran.r.(dom.r.R):
($a|a r y Ù aÎ dom.r.R))
º(definition of dom.r.R)
("y|y Î ran.r.(dom.r.R):
($a|a r y Ù aÎ {c|crd Ù d Î R:c}))
º(definition of Î)
("y|y Î ran.r.(dom.r.R):
($a|a r y Ù ($c|crd Ù d Î R:c=a)))
º(trading, one point rule)
("y|y Î ran.r.(dom.r.R):
($a|a r y Ù ard Ù d Î R))
Þ(definition 1, given)
("y|y Î ran.r.(dom.r.R):
($a|a r y Ù ard Ù d Î R Ù y=d))
º(trading, one point rule)
("y|y Î ran.r.(dom.r.R):
a r y Ù ary Ù y Î R )
º(a Ù b Þ b, monotonicity of ")
("y|y Î ran.r.(dom.r.R): y Î R )
º(definition of Í)
ran.r.(dom.r.R) Í R
End of Proof
Theorem 6: r is a function Ù R Í ran.r Þ ran.r.(dom.r.R) = R
(given r Is a function Ù R Í ran.r, prove LHS = RHS)
(given, Theorem 5)
ran.r.(dom.r.R) Í R
º(given, Relations Part 2 Theorem 16, identity of Ù)
ran.r.(dom.r.R) Í R Ù R Í ran.r.(dom.r.R)
º(AÍB Ù BÍA º A = B)
ran.r.(dom.r.R) = R
End of Proof
Theorem 7: r is a function Þ dom.r.R Ç dom.r.~R = Æ
(given r is a function, theorem 4)
dom.r.R Ç dom.r.~R = dom.r.(R Ç ~R)
=(contradiction)
dom.r.R Ç dom.r.~R = dom.r.Æ
dom.r.R Ç dom.r.~R = Æ
End of Proof
Theorem 8: r is a function Þdom.r.R Í ~dom.r.~R
(prove LHS Þ RHS)
r is a function
Þ(Theorem 6)
dom.r.R Ç dom.r.~R = Æ
º(P Ç Q = ƺ P Í ~Q)
dom.r.R Í ~dom.r.~R
End of Proof
Theorem 9: r is a function Þdom.r.~R Í ~dom.r.R
(prove LHS Þ RHS)
r is a function
Þ(Theorem 7)
dom.r.R Í ~dom.r.~R
º(Contrapositive)
~~dom.r.~R Í ~dom.r.R
º(~~P = P)
dom.r.~R Í ~dom.r.R
End of Proof
Theorem 10: r is a function Þ dom.r.R = dom.r.R - dom.r.~R
(prove LHS Þ RHS)
r is a function
Þ(Theorem 7)
dom.r.R Í ~dom.r.~R
º(P Í Q º P Ç Q = P)
dom.r.R = dom.r.R Ç ~dom.r.~R
º(property of set difference)
dom.r.R = dom.r.R - dom.r.~R
End of Proof
References:
Dijkstra, Edsgar W. and Scholten, Carel S. 1990 Predicate Calculus and Program Semantics, New York, NY: Springer-Verlag
Fejer, Peter and Simovici, Dan A., 1991, Mathematical Foundations of Computer Science, New York, NY: Springer-Verlag
Ganong, Rick 1999, Course notes and comments from M1090 and M2090 math and logic courses, http://www.math.yorku.ca/Who/Faculty/Ganong
Gries, David and Schneider, Fred B., 1993, A Logical Approach to Discrete Math, New York, NY: Springer-Verlag
Hu Sze-Tsen, 1963, Elements of Modern Algebra, San Francisco: Holden-Day, Inc.