Math Notes – Singleton Sets

 

Axiom 1: {a} = {x|x=a:x}.

 

Any temporary variables introduced in the theorems are assumed to be distinct.  That is, the temporary variables do not occur as free variables in any other expression.

 

Theorem 1: b Î {a} º b = a

(prove LHS º RHS)

      b Î {a}

º(axiom 1)

      b Î {x|x=a:x}

º(definition of Î)

      ($x|x=a:b=x)

º(one point rule)

      b = a

End of Proof

 

Corollary: x Î {x}

(reflexive property of =)

      x = x

º(Theorem 1)

      x Î {x}

End of Proof 

 

Theorem 2: a Î P º {a} Í P

(prove RHS º LHS)

      {a} Í P

º(definition of Í)

      ("x|x Î {a}: x Î P)

º(Theorem 1)

      ("x|x = a: x Î P)

º(one point rule)

      a Î P

End of Proof

 

Theorem 3: {a} Í P Ú {a} Í Q º {a} Í (P È Q)

(Prove by showing LHS º RHS)

     {a} Í P Ú {a} Í Q

º(Theorem 2)

     a Î P Ú a Î Q

º(definition of È)

     a Î (P È Q)

º(Theorem 2)

     a Í (P È Q)

End of Proof

 

Theorem 4: {x} Í B Ú {x} Í ~B

(prove ØLHS Þ RHS)

      Ø({x} Í B)

º(Theorem 2)

      Ø(x Î B)

º(definition of not Î)

      x Ï B

º(complement)

      x Î ~B

º(Theorem 2)

      {x} Í ~B

End of Proof

 

 

References:

 

Dijkstra, Edsgar W. and Scholten, Carel S. 1990 Predicate Calculus and Program Semantics, New York, NY: Springer-Verlag

 

Fejer, Peter and Simovici, Dan A., 1991, Mathematical Foundations of Computer Science, New York, NY: Springer-Verlag

 

Ganong, Rick 1999, Course notes and comments from M1090 and M2090 math and logic courses, http://www.math.yorku.ca/Who/Faculty/Ganong

 

Gries, David and Schneider, Fred B., 1993, A Logical Approach to Discrete Math, New York, NY: Springer-Verlag

 

Hu Sze-Tsen, 1963, Elements of Modern Algebra, San Francisco: Holden-Day, Inc.