Math Notes – Theory of Relations – Part 2
In the following theorems, all relations are subsets of the cross-product B´C, so an implicit assumption in all theorems is
rÍ A´B, sÍ A´B
In some theorems there will be a reference to the universal set of discourse. The universal set of discourse is denoted by U.
A reference to a theorem from part 1, 2, 3, or 4 is noted. If there is no reference to part 1,2,3, or part 4 then the theorem reference is on this page.
Definition 1: (inverse) <a,b> Î r º <b,a> Î r-1
Theorem 1: ran.r.P = dom.(r-1).P
(Reflexive property of set =)
ran.r.P = ran.r.P
º(definition of set =)
("x |: x Î ran.r.P º x Î ran.r.P)
("x |: x Î ran.r.P º x Î {b |($a |:<a, b> ÎrÙ a Î P):b})
º(definition of Î)
("x |: x Î ran.r.P º ($b |($a |:<a, b> ÎrÙ a Î P):b=x))
º(definition of inverse)
("x |: x Î ran.r.P º ($b |($a |:<b, a> Îr-1Ù a Î P):b=x))
º(definition of Î)
("x |: x Î ran.r.P º x Î {b |($a |:<b, a> Îr-1Ù a Î P):b})
("x |: x Î ran.r.P º x Î dom.(r-1).P)
º(definition of set =)
ran.r.P = dom.(r-1).P
End of Proof
Theorem 2: ran.(r-1).P = dom.(r).P
(Reflexive property of set =)
ran.{r-1).P = ran.(r-1).P
º(definition of set =)
("x |: x Î ran.{r-1).P º x Î ran.(r-1).P)
("x |: x Î ran.(r-1).P º x Î {b |($a |:<a, b> Îr-1Ù a Î P):b})
º(definition of Î)
("x |: x Î ran.(r-1).P º ($b |($a |:<a, b> Îr-1Ù a Î P):b=x))
º(definition of inverse)
("x |: x Î ran.(r-1).P º ($b |($a |:<b, a> ÎrÙ a Î P):b=x))
º(definition of Î)
("x |: x Î ran.(r-1).P º x Î {b |($a |:<b, a> ÎrÙ a Î P):b})
("x |: x Î ran.(r-1).P º x Î dom.r.P)
º(definition of set =)
ran.(r-1).P = dom.r.P
End of Proof
Theorem 3: dom.((r-1)-1).P = dom.r.P
(Prove LHS = RHS)
dom.((r-1)-1).P
=(Theorem 1)
ran.(r-1).P
=(Theorem 2)
dom.r.P
End of Proof
Theorem 4: ran.((r-1)-1).P = ran.r.P
(Prove LHS = RHS)
ran.((r-1)-1).P
=(Theorem 2)
dom.(r-1).P
=(Theorem 1)
ran.r.P
End of Proof
Theorem 5: ran.r.Æ = Æ
(Part 1 Theorem 1)
dom.(r-1).Æ = Æ
º(Theorem 1)
ran.r.Æ = Æ
End of Proof
Theorem 6: P Í Q Þ ran.r.P Í ran.r.Q
P Í Q Þ dom.(r-1).P Í dom.(r-1).Q
º(Theorem 1)
P Í Q Þ ran.r.P Í ran.r.Q
End of Proof
Theorem 7: P Í Q Þ ~ran.r.~P Í ~ran.r.~Q
P Í Q Þ ~dom.(r-1).~P Í ~dom.(r-1).~Q
º(Theorem 1)
P Í Q Þ ~ran.r.~P Í ~ran.r.~Q
End of Proof
Theorem 8: ran.r.(P È Q) = ran.r.P È ran.r.Q
dom.(r-1).(P È Q) = dom.(r-1).P È dom.(r-1).Q
º(Theorem 1)
ran.r.(P È Q) = ran.r.P È ran.r.Q
End of Proof
Theorem 9: ran.r.(P Ç Q) Í (ran.r.P Ç ran.r.Q)
dom.(r-1).(P Ç Q) Í (dom.(r-1).P Ç dom.(r-1).Q)
º(Theorem 1)
ran.r.(P Ç Q) Í (ran.r.P Ç ran.r.Q)
End of Proof
Theorem 10: rÍ A´B Þ ran.r.R = ran.r.(R Ç A)
(Prove LHS Þ RHS)
rÍ A´B
º(property of inverse)
r-1Í B´A
Þ(Part 1 Theorem 6)
dom.(r-1).R = dom.(r-1).(R Ç A)
º(Theorem 1)
ran.r.R = ran.r.(R Ç A)
End of Proof
Theorem 11: rÍ A´B Þ ran.r.A = ran.r
(given rÍ A´B, Prove LHS = RHS)
(definition of ran.r.A)
ran.r.A = {b|($a|:a r b Ù a Î A):b}
º(Definition of set equality)
("x|x Î ran.r.A º x Î {b|($a|:a r b Ù a Î A):b})
º(definition of Î)
("x|x Î ran.r.A º ($b|($a|:a r b Ù a Î A):x=b))
º(rÍ A´B Ù a r b Þ a Î A)
("x|x Î ran.r.A º ($b|($a|:a r b Ù true):x=b))
º(identity of Ù)
("x|x Î ran.r.A º ($b|($a|:a r b):x=b))
º(definition of Î)
("x|x Î ran.r.A º x Î {b|($a|:a r b):b})
º(definition of ran.r)
("x|x Î ran.r.A º x Î ran.r)
º(Definition of set equality)
ran.r.A = ran.r
End of Proof
Corollary: rÍ A´B Þ ran.r = dom.(r-1)
(given rÍ A´B, show LHS = RHS)
(Theorem 11)
ran.r = ran.r.A
º(Theorem 1)
ran.r = dom.(r-1).A
º(r-1Í B´A, Part 1 Theorem 7)
ran.r = dom.(r-1)
End of Proof
Theorem 12: rÍ A´B Ù A Í P Þ ran.r.P = ran.r
(given rÍ A´B Ù A Í P, prove LHS = RHS)
(property of inverse)
r-1Í B´A Ù A Í P
dom.r-1.P = dom.r-1
º(Theorem 1)
ran.r.P = ran.r
End of Proof
Corollary: rÍ A´B Þ ran.r.(R È ~R) = ran.r
(given rÍ A´B, prove LHS = RHS)
(property of inverse)
r-1Í B´A
Þ(Corollary to Part 1 Theorem 8)
dom.(r-1).(R È ~R) = dom.r-1
º(Theorem 1)
ran.r.(R È ~R) = ran.r
End of Proof
Theorem 13: y Î ran.r.{x} º x r y
(prove LHS º RHS)
y Î ran.r.{x}
y Î {b|($a|:a r b Ù a Î {x}):b}
º(Definition of Î)
($b|($a|:a r b Ù a Î {x}):b=y)
º(One point rule)
($a|:a r y Ù a Î {x})
($a|:a r y Ù a = x)
º(trading)
($a|a r y :a = x)
º(One point rule)
x r y
End of Proof
Theorem 14: P Í ~dom.rÞ ran.r.P = Æ
P Í ~dom.r
º(definition of Í)
("a|aÎP: aÎ~dom.r)
º(definition of ~)
("a|aÎP: aÏdom.r)
º(definition of dom.r)
º(definition of Ï)
º(one point rule)
º(DeMorgan)
º(trading)
º(distribute Ú over ")
º(exchange variables)
º(DeMorgan, twice)
º(DeMorgan)
Þ(instance ($x|:), contrapositive)
Ø($a |: aÎP Ù (a r x))
º(one point rule)
Ø($b|($a |: aÎP Ù (a r x):b=x)
º(definition of Î)
Ø(x Î {b|($a |: aÎP Ù (a r x):b})
º(definition of ran.r.P)
Ø(x Î ran.r.P)
º(definition of Æ)
ran.r.P = Æ
End of Proof
Theorem 15: P Í dom.rÞ P Í dom.r.(ran.r.P)
(Prove LHS Þ RHS)
P Í dom.r
º(PÍP, PÍQÙPÍRºPÍQÇR)
P Í PÇdom.r
º(definition of Í)
("s|s Î P: s Î PÇdom.r)
º(definition of Ç)
("s|s Î P: s Î P Ù s Î dom.r)
("s|s Î P: s Î P Ù s Î {a|($b|a r b):a})
º(definition of Î)
("s|s Î P: s Î P Ù ($a|($b|a r b):a=s))
º(Ù distributes over $)
("s|s Î P: ($a|($b|a r b Ù s Î P):a=s))
º(Ù is idempotent)
("s|s Î P: ($a|($b| a r b Ù a r b Ù s Î P):a=s))
º(One point rule)
("s|s Î P: ($b| s r b Ù s r b Ù s Î P))
Þ(existence, P Þ ($x|P))
("s|s Î P: ($b| s r b Ù ($c|:c r b Ù c Î P)))
º(One point rule)
("s|s Î P: ($b| s r b Ù ($d|($c|:c r d Ù c Î P):d=b)))
º(definition of Î)
("s|s Î P: ($b| s r b Ù b Î {d|($c|:c r d Ù c Î P):d}))
("s|s Î P: ($b| s r b Ù b Î ran.r.P))
º(One point rule)
("s|s Î P: ($a|($b| a r b Ù b Î ran.r.P):a=s))
º(definition of Î)
("s|s Î P: s Î {a|($b| a r b Ù b Î ran.r.P):a})
("s|s Î P: s Î dom.r.(ran.r.P))
º(definition of Í)
P Í dom.r.(ran.r.P)
End of Proof
Theorem 16: P Í ran.r Þ P Í ran.r.(dom.r.P)
(Theorem 15)
P Í dom.(r-1) Þ P Í dom.(r-1).(ran.(r-1).P)
º(Theorem 1)
P Í dom.(r-1) Þ P Í ran.r.(ran.(r-1).P)
º(Theorem 2)
P Í dom.(r-1) Þ P Í ran.r.(dom. r.P)
º(Corollary to Theorem 11)
P Í ran.rÞ P Í ran.r.(dom. r.P)
End of Proof
References:
Brettler, Eli 1999, Course notes and comments from M1090 and M2090 math and logic courses, http://www.math.yorku.ca/Who/Faculty/Brettler/menu.html
Dijkstra, Edsgar W. and Scholten, Carel S. 1990 Predicate Calculus and Program Semantics, New York, NY: Springer-Verlag
Fejer, Peter and Simovici, Dan A., 1991, Mathematical Foundations of Computer Science, New York, NY: Springer-Verlag
Ganong, Rick 1999, Course notes and comments from M1090 and M2090 math and logic courses, http://www.math.yorku.ca/Who/Faculty/Ganong
Gries, David and Schneider, Fred B., 1993, A Logical Approach to Discrete Math, New York, NY: Springer-Verlag
Hu Sze-Tsen, 1963, Elements of Modern Algebra, San Francisco: Holden-Day, Inc.