Math Notes – Theory of Relation Compositions
In the following theorems, all relations are subsets of the cross-product B´C, so an implicit assumption in all theorems is
rÍ A´B, sÍ A´B
In some theorems there will be a reference to the universal set of discourse. The universal set of discourse is denoted by U.
A reference to a theorem from part 1, 2 or 3 is noted. If there is no reference to part 1,2 or part 3, then the theorem reference is on this page.
Definition 1: r·s = {r,s | ($y|:<r,y> ÎrÙ <y,s> Îs):<r,s>}
Theorem 1: a r·s b º ($y|:a r y Ù y s b)
(prove LHS º RHS)
a r·s b
º(Set membership)
<a,b> Îr·s
º(definition 1)
<a,b> Î {r,s | ($y|r r y Ù y s s):<r,s>}
º(definition of Î)
($r,s | ($y|r r y Ù y s s):<r,s>=<a,b>)
º(One point rule)
($y|a r y Ù y s b)
Theorem 2: dom.(r·s).R = dom.r.(dom.s.R)
(Reflexive property of set =)
dom.(r·s).R = dom.(r·s).R
º(definition of set =)
("x |: x Î dom.(r·s).R º x Î dom.(r·s).R)
("x |: x Î dom.(r·s).R º
º(definition of Î)
("x |: x Î dom.(r·s).R º
º(Theorem 1)
("x |: x Î dom.(r·s).R º
($a|($b|:($y|: a r y Ù y s b)Ù b Î R):a=x))
º(one point rule)
("x |: x Î dom.(r·s).R º
($b|:($y|: x r y Ù y s b)Ù b Î R))
º(distribute Ù over $)
("x |: x Î dom.(r·s).R º
($b|:($y|: x r y Ù y s b Ù b Î R)))
º(Variable interchange)
("x |: x Î dom.(r·s).R º
($y|:($b|: x r y Ù y s b Ù b Î R)))
º(distribute Ù over $)
("x |: x Î dom.(r·s).R º
($y|: x r y Ù ($b|: y s b Ù b Î R)))
º(one point rule)
("x |: x Î dom.(r·s).R º
($y|: x r y Ù ($a|($b|: a s b Ù b Î R):a=y)))
º(definition of Î)
("x |: x Î dom.(r·s).R º
($y|: x r y Ù y Î {a|($b|: a s b Ù b Î R):a}))
("x |: x Î dom.(r·s).R º
($y|: x r y Ù y Î dom.s.R))
º(one point rule)
("x |: x Î dom.(r·s).R º
($a|($y|: a r y Ù y Î dom.s.R):a=x))
º(definition of Î)
("x |: x Î dom.(r·s).R º
x Î {a|($y|: a r y Ù y Î dom.s.R):a})
º(definition of dom.r.(dom.s.R))
("x |: x Î dom.(r·s).R º
x Î dom.r.(dom.s.R))
º(definition of set equality)
dom.(r·s).R = dom.r.(dom.s.R)
End of Proof
Theorem 3: dom.(r·s) = dom.r.(dom.s)
(Part 1 Theorem 7, given r·sÎ A´B)
dom.(r·s) = dom.(r·s).B
º(Theorem 2)
dom.(r·s) = dom.r.(dom.s.B)
º(Part 1 Theorem 7, given r·sÎ A´B)
dom.(r·s) = dom.r.(dom.s)
End of Proof
Theorem 4: cond.(r·s).R = dom.r.(dom.s.R) - dom.r.(dom.s.~R)
(Prove LHS = RHS)
cond.(r·s).R
dom.(r·s).R – dom.(r·s).~R
=(Theorem 2)
dom.r.(dom.s.R) – dom.r.(dom.s.~R)
End of Proof
Theorem 5: cond.r.(cond.s.R) Í cond.(r·s).R
(Prove LHS Í RHS)
cond.r.(cond.s.R)
cond.r.(dom.s.R – dom.s.~R)
=(definition of set difference)
cond.r.(dom.s.R Ç ~dom.s.~R)
cond.r.(dom.s.R) Ç cond.r.(~dom.s.~R)
(dom.r.(dom.s.R) - dom.r.(~dom.s.R))
Ç (dom.r.(~dom.s.~R) - dom.r.(~~dom.s.~R))
=(definition of set difference)
(dom.r.(dom.s.R) Ç ~dom.r.(~dom.s.R))
Ç (dom.r.(~dom.s.~R) Ç ~dom.r.(~~dom.s.~R))
=(~~P = P)
(dom.r.(dom.s.R) Ç ~dom.r.(~dom.s.R))
Ç (dom.r.(~dom.s.~R) Ç ~dom.r.(dom.s.~R))
Í(P Ç Q Í P)
dom.r.(dom.s.R) Ç ~dom.r.(dom.s.~R)
=(Theorem 2)
dom.(r·s).R Ç ~dom.(r·s).~R
=(definition of set difference)
dom.(r·s).R - dom.(r·s).~R
cond.(r·s).R
End of Proof
Theorem 6: (dom.s.R Ç dom.s.~R = Æ Ù
dom.r.(dom.s.R) Ç dom.r.(~dom.s.R) = Æ) Þ
cond.(r·s).R Í cond.r.(cond.s.R)
(given dom.s.R Ç dom.s.~R = ÆÙ dom.r.(dom.s.R) Ç dom.r.(~dom.s.R) = Æ,
prove that LHS Í RHS)
cond.(r·s).R
=(Theorem 4)
dom.r.(dom.s.R) - dom.r.(dom.s.~R)
=(property of set difference)
dom.r.(dom.s.R) Ç ~dom.r.(dom.s.~R)
Í(P Ç Q Í P)
dom.r.(dom.s.R)
=(Condition Theorem 8, given)
cond.r.(cond.s.R)
End of Proof
Corollary to Theorem 6: (dom.s.R Ç dom.s.~R = ÆÙ
dom.r.(dom.s.R) Ç dom.r.(~dom.s.R) = Æ) Þ
cond.(r·s).R = cond.r.(cond.s.R)
(given dom.s.R Ç dom.s.~R = ÆÙ dom.r.(dom.s.R) Ç dom.r.(~dom.s.R) = Æ,
prove that LHS = RHS)
(Theorem 6, given)
cond.(r·s).R Í cond.r.(cond.s.R)
(Theorem 5)
cond.r.(cond.s.R) Í cond.(r·s).R
º(identity of Ù, P Í Q Ù Q Í P º P = Q)
cond.(r·s).R = cond.r.(cond.s.R)
End of Proof
Theorem 7: r is a function Ù s is a function Þ
cond.r.(cond.s.R) = cond.(r·s).R
(given r is a function Ùs is a function, Prove LHS = RHS)
cond.r.(cond.s.R)
=(Condition Theorem 7, given)
dom.r.(dom.s.R)
=(theorem 2)
dom.(r·s).R
=(Condition Theorem 7, the composite of two functions is a function)
cond.(r·s).R
End of Proof
References:
Dijkstra, Edsgar W. and Scholten, Carel S. 1990 Predicate Calculus and Program Semantics, New York, NY: Springer-Verlag
Fejer, Peter and Simovici, Dan A., 1991, Mathematical Foundations of Computer Science, New York, NY: Springer-Verlag
Ganong, Rick 1999, Course notes and comments from M1090 and M2090 math and logic courses, http://www.math.yorku.ca/Who/Faculty/Ganong
Gries, David and Schneider, Fred B., 1993, A Logical Approach to Discrete Math, New York, NY: Springer-Verlag
Hu Sze-Tsen, 1963, Elements of Modern Algebra, San Francisco: Holden-Day, Inc.